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Abstract—Large-scale systems refer to systems that consist
of many interconnected local systems. Conventional centralized
control schemes are not suitable for such large-scale systems
because of their complex local and global dynamic behavior
as well as computational difficulties. This paper introduces the
general framework of an agent-based federated control motivated
by the political structure where partially self-governing states
are united by a federal government. Likewise, a multi-agent
based federated control system is composed of local autonomous
subsystems (agent-based controllers) that cooperate to provide an
overall (large-scale) system behavior. In this concept, each agent
has partial observations of the state of other agents and executes
the local control law correspondingly to satisfy the performance
requirements at the overall system level. Preliminary results are
presented on the general architecture of multi-agent federated
control for local and global connective stability.

I. INTRODUCTION

System control is a growing research area with many in-
novative techniques being introduced. During the past decade,
most research work focused on systems with first or second
order linear or nonlinear dynamics [1] [2] [3]. Today’s systems
are greatly advanced and complex, and demand more flexi-
bility on system configurations and control schemes. Current
control research is focused on systems with complex dynamics
that are often classified as large-scale systems. Large-scale
systems refer to systems that consist of several interconnected
local systems, which may be coupled in some sort of configu-
ration for a common performance goal. A large scale dynamic
system is characterized by three factors:
1) High dimensionality of state variables
2) High complexity of computation
3) High search complexity of the action space
Systems of this kind appear, for example, in electric power
systems, modern industrial applications, robotic systems, com-
munication networks, economic systems and traffic networks.
When designing a large-scale system, it is often more

effective to consider the system as a collection of several
subsystems, and then to design each subsystem and their
relationships [4]. To analyze the stability of large systems,
one approach is to determine if the smaller systems are input-
output reachable and controllable. Control design of complex

large-scale systems cannot be done using conventional cen-
tralized techniques because of complexity of their dynamic
behavior as well as computational difficulties. In addition,
implementation of traditional centralized control is also prob-
lematic since any small change in the system dynamics will
require a complete redesign of the centralized controller. It
is clear that centralized control paradigms cannot meet the
challenges of global performance requirements and stability.
For control of large-scale interconnected systems, it is

typical to have some form of decentralized control archi-
tecture. These large-scale control systems have several local
controllers, which observe only local outputs and control only
local inputs, according to the performance requirements of
the local systems. Each local controller is only involved in
the local system control operation, yet the local controllers
may be interconnected on some level of the global system.
Therefore, the performance of each local controller effects the
overall system performance and stability. But, these traditional
decentralized methods can have flexibility and scalability
issues.
New theoretical and application issues are arising as a

result of current trends in distributed control, such as multi-
agent based control. One of the key objectives of agent-based
control is to use the decentralized approach but guarantee local
and global closed loop stability, while reducing the control
systems’ computational load that is related to a centralized
approach. Sycara [5] defined a multi-agent system as a col-
lection of autonomous agents that interact with each other and
their environment for the purpose of accomplishing a common
objective. In other words, a multi-agent system is “a loosely
coupled network of problem solvers (agents) that interact to
solve problems that are beyond the individual capabilities or
knowledge of each problem solver” [6]. Examples include
devices or entities governed by software agents, such as a
group of robots, cars in traffic on the road, or automated
equipment pieces in an assembly line. Multi-agent systems can
manifest self-organization and complex behaviors even when
the individual strategies of all their agents are simple.
In the past few years, multi-agent concept studies

are generally focused on the development of decentral-
ized control laws in order to reach a global objective
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[7] [8] [9] [10] [11] [12] [13]. A common technique is for
agreement to be reached between agents through “consensus”
regarding a certain quantity of interest that depends on the
state of all agents [14]. Many researchers find that agent-
based control is suitable for decentralized cooperative control.
However, common agent-based control methods may be too
simple to explain sub-system dynamic behaviors. Agent-based
control normally models each sub-system as a particle and
ignores the sub-system (local) dynamics.

II. MULTI-AGENT BASED FEDERATED CONTROL
ARCHITECTURE

This paper investigates a new concept of control: federated
control, motivated by the political structure of a federal
government. Each state of the union maintains some level of
political autonomy and at the same time must comply with
the federal government policies. Likewise, a multi-agent based
federated control system is composed of local autonomous
entities (agent-based controllers) that cooperate to provide
an overall (a large-scale) system behavior. Each agent based
controller maintains its own local stability and has partial
observations of the state of other agents. The agents execute
their local control laws in order to satisfy the performance
requirements at the overall system level.
In this concept, each agent represents an individual inde-

pendent complete dynamic process with its own control law,
which is interconnected with its appropriate neighbor agent(s).
Interconnection of the agents through a communication net-
work forms the federation in a distributed large-scale complex
system. Fig. 1 illustrates this concept.

Fig. 1. Multi-agent Federated Control System

The concept of federated control with multi-agents pro-
vides the capability to revolutionize the system requirements
dynamically. It enhances the overall system performance ro-
bustness. Agents will negotiate their local and global stability
constraints following a federated “goal.” The global “Goal”
at the federal level is communicated to the agents via the
communication network. The attributes of this “Goal” could
be an output-input function, state equality constraints, input
inequality constraints, cost function, or control logic, etc. Each
agent makes its control decision independently and adjusts
its controller accordingly upon receiving the federal “Goal”
request and the state information from other agents at the local
level. The agent could reject the “Goal” request if its local

stability is threatened. Agents are self-aware, self-interested
and self-protective to maintain their own stability, but the
overall system stability will be satisfied as well.

III. MULTI-AGENT BASED FEDERATED CONTROL
FORMULATION

The control goal is to design a federated, multi-agent based
controller for each local system and guarantee connective
stability of the overall system. The concept of connective
stability requires that the system remains stable in the sense of
Lyapunov under structural perturbation [15], whereby local
systems are disconnected and connected again in unpredictable
ways during operation. The objective of multi-agent based
federated control and the stability analysis is to prove that there
exist vector Lyapunov functions for each of the individual
local systems and that the vector sum of these Lyapunov
functions is a Lyapunov function for the overall connective
system. In the large-scale interconnected system, a vector
Lyapunov function provides an extremely flexible stability
analysis framework since each sub-system of the vector Lya-
punov function can satisfy less strict requirements compared
to single scalar Lyapunov functions. Hence, it is preferred to
use a vector Lyapunov function to develop the control design
of a large-scale interconnected system and prove stability
[16] [17] [18] [19].
An interconnected large-scale system can be mathematically

represented by

S : ẋi = fi(t,xi,ui)+hi(t,x) i ∈ {1, · · · ,N}
yi = Cixi (1)

where N is the number of independent subsystems with
local dynamics Si: ẋi = fi(t,xi,ui) that are interconnected
through hi = hi(t,ei1x1,ei2x2, · · · ,eiNxN). The elements of the
fundamental interconnection matrix are defined as E = (ei j),
and

ei j =

{
0, x j does not occur in hi(t,x)
1, x j occurs in hi(t,x)

(2)

The elements ei j represent the connectivity between the
individual subsystems (local agents). As stated in [15], the
system is connectively stable if it is stable in the Sense of
Lyapunov for all possible interconnection matrices E = (ei j)
(denoted E ∈ E).
From the perspective of multi-agent federated control, the

subsystem connectivity configuration is controlled by an agent
which also manages the federated control law to maintain the
local and global stability. The subsystem connectivity may be
established by an agent for the purpose of implementing a con-
trol law to meet the performance goals at the federated level.
Each local agent observes its own state and the output states
from its connected neighbors and determines the maximum
tolerance related to interconnection to its neighbors. Fig. 2
shows several key components and the structure of an agent
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controller. The system shown in Fig. 1 and Fig. 2 can be
constructed as

Si : ẋi = Aixi+Biui i ∈ {1, · · · ,N} (3)
yi =Cixi

Note that each subsystem is independent and can operate as
a stand-alone system unless there is a need for subsystem
interconnection to meet federal goals. The control can be
defined as ui = uLocal Controli + uAgent Controli where the Local
Control is determined to maintain the local subsystem stability
and other performance requirements, whereas federal perfor-
mance requirements are guaranteed by the agent control. The
agent controller, uAgent Control, is the decision processor at the
federated level as illustrated in Fig. 2.

Fig. 2. Structure of an Agent

The overall system is composed of the team of agents which
work together to provide a flexible framework to achieve total
system stability. A general form of the i-th agent controller to
achieve the federated control performance can be considered
as

uAgentControli = γ2 ∑
j∈N
ei j(yi− y j)︸ ︷︷ ︸

Consensus term

+γ1(−ki(xdesiredi − xi))︸ ︷︷ ︸
Federated term

(4)

where the γ terms are the weights. In equation (4), the agent
selfishness is represented in the consensus term where each
agent determines its interconnection strength to its neighbors,
defined by the weight γ2. The agents can disconnect the
interrelation with their unstable neighbors when their local
stability is threatened, defined by ei j. Finally, the overall
system performance goals are defined in the federated term.
An example of the federated term is a trajectory for the group
of agents to follow.
In a multi-agent federated control system, the dynamics

of each local system can be different. The agent controller
ui is not identical for every agent due to the inclusion of
the federated and consensus terms. Therefore, the controller
performance of each local agent is self-adjusted to satisfy local
stability while following the federal guideline, as well as to
achieve the overall system stability and performance at the
federal level.

IV. STABILITY OF LARGE-SCALE SYSTEMS
This section demonstrates how a simple control law for

each agent can guarantee stability of the overall system. As an

example, consider the interconnected system shown in Fig. 3 in
which several subsystems are interconnected, forming a chain.
The control input of each local system includes the output state
of its neighboring system through a gain γ . The goal is to use
multi-agent federated control to maintain global stability of
the complete system.

Fig. 3. An Input/Output Interconnected System via Multi-agents

If the subsystems are linear, the complete system can be
represented as

S: ẋi = Aixi+Biui+ γi
N

∑
j=1
ei jAi jx j i ∈ {1, · · · ,N} (5)

where ei j is the interconnection matrix and γi is the consensus
connective strength.
Stability analysis is based on the concept of vector Lya-

punov functions developed by [20]. The vector Lyapunov
function for each individual system is defined as

Vi(xi) = (xTi Hixi) (6)

where Hi is a positive definite matrix. The function Vi(xi)
satisfies the Lipschitz condition with an existing Lipschitz
constant λ

1
2max(Hi). Then, the system S is connectively stable

if the matrix W is an aggregate matrix or M-matrix.(i.e. real
symmetric positive definite matrix)

W = (wi j) =

⎧⎨
⎩

λmin(Gi)
2λmax(Hi)

− eiiλ
1
2max(ATii Aii), i= j

−ei jλ
1
2max(ATi jAi j), i �= j

(7)

Here Gi is a symmetric positive matrix and satisfies the
Lyapunov matrix equation:

ATi Hi+HiA
T
i +Gi = 0 (8)

It is also known that the larger the diagonal elements wii
and the smaller the off-diagonal elements wi j, the better the
opportunity to driveW to be an M-matrix. Clearly, the stability
matrix Gi in equation (8) needs to be chosen to maximize the
ratio of λmin(Gi)

λmax(Hi)
. This ratio is the estimation of the degree of

stability for each large-scale system Si.
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A. Chain of Interconnected Integrators
For the particular linear input-output connected system as

shown in Fig. 3, the following analysis shows that the agents
play the major role in connecting and maintaining stability of
the overall system. For simplicity of presentation, it is assumed
that the subsystem plant is an integrator with a proportional
feed forward gain and a unity feedback loop. It is also assumed
that the connective strength γ is identical for every subsystem.
Then the dynamics of each subsystem could be described as

ẋi =−kpxi+ kpui
yi =Cxi where C = I (9)

where xi is the state of the i-th system, ui is the control input,
and y is the output of the subsystem.
It is assumed that each agent needs to determine the

connective strength which it can interrelate to its neighbors.
It is noted that the potential term and the federated term
are neglected for simplicity in this example. Then, the agent
controller is simple consensus control

ui = γ ∑
j∈N

(yi− y j) (10)

For this particular configuration, the input of each subsystem
is

u1 = γx2
ui = γ(xi−1+ xi+1) i ∈ {2, · · · ,N−1}
uN = γxN−1 (11)

where γ is the connective strength to be determined by each
agent. Then the generalized system equation is

S: ẋi = Âixi+ γ
N

∑
j=1
ei jÂi jx j i ∈ {1, · · · ,N} (12)

where Âi donates a closed loop subsystem. In the above equa-
tion, ei j is the agent communication connectivity switch which
allows the agent to maintain interconnection with neighboring
agents. The system matrix is Ai =−kp for the system of (9).
The expanded system equation is

ẋ1 =−kpx1+ e11γkpx1+ e12γkpx2+ · · ·
ẋ2 =−kpx2+ e21γkpx1+ e22γkpx2+ e23γkpx3+ · · ·
· · ·

ẋN =−kpxN + eN1γkpx1+ eN2γkpx2+ eN3γkpx3+ · · · (13)
Since the multi-agents manage the stability and the connec-

tivity of each subsystem, the W matrix can be constructed. In
addition, the gain kp, connective strength γ and connectivity
parameter ei j need to be determined. For the large scale system
of (13), the test matrix becomes

W = (Wi j)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kp −γkp 0 0 0 · · · 0
−γkp kp −γkp 0 0 · · · 0
0 −γkp kp −γkp 0 · · · 0
0 0 −γkp kp −γkp 0
...

. . .
...

... −γkp kp −γkp
0 · · · · · · −γkp kp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

In what follows, we shows that the maximum tolerance factor
γ reaches a limit of γ = 1

2 for this particular large system
exploiting the multi-agent based federated control method.
Proof: Equation (14) could be rewritten as

W = kpI+ γkpE
= kp(I+ γE ) (15)

where E =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 0 · · · 0
−1 0 −1 0 0 · · · 0
0 −1 0 −1 0 · · · 0
0 0 −1 0 −1 0
...

. . .
...

... −1 0 −1
0 · · · · · · −1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (16)

Given an arbitrary vector ζ satisfying −‖E ‖‖ζ‖2≤ 〈E ζ ,ζ 〉 ≤
‖E ‖‖ζ‖2, then

〈Wξ ,ξ 〉= 〈(I+ γE )ξ ,ξ 〉 ≡ ‖ξ‖2+ γ〈E ξ ,ξ 〉
≥ ‖ξ‖2− γ‖E ‖‖ξ‖2

≡ (1− γ‖E ‖)‖ξ‖2

In order to assureW to be positive definite, then 1−γ‖E ‖>

0 must be satisfied. That gives

γ <
1
‖E ‖

=

⎧⎪⎪⎨
⎪⎪⎩

1
maxi(∑ j |Ei j |)

= 1
|−2| , finding max in row

or
1

max j(∑i |Ei j |)
= 1
|−2| , finding max in column

Therefore the connective strength γ should be selected less
than 0.5 to guarantee the global and local stability for the
large-scale system. Note also that this result holds for arbitrary
interconnection ei j as subsystems enter or leave the federation.
�

From the perspective of multi-agent concepts, each subsys-
tem shown in Fig. 3 is controlled by an agent with its own
control law as defined in (11). The subsystem stability is
determined by the forward gain coefficient kp > 0, and γ is the
connective strength determined by each agent. The objective
at the federal level is to maintain global stability of the entire
interconnection.
Initial investigations show that the system is stable at the

federated level if the connective strength γ remains within
the limit of 0 < γ <

1
2 for large N. In particular, γ = 1 for

an interconnected federation of N = 2, γ = 0.707 for N = 3
and γ = 0.618 for N = 4. Therefore, for this particular large-
scale system using multi-agent based federated control, the
connective strength γ should be selected less than 0.5 to
guarantee stability of the overall federated system and each
local subsystem for an arbitrary interconnection of N sub-
systems.
One of the advantages in connective strength γ computation

is that the agent computes γ only according to its own
endurance level to the external influence. The agent does not
need to know the system information of the neighbor agent.
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V. SIMULATION EXAMPLES
As an example, a numerical simulation is given to illustrate

the effectiveness of the multi-agent based federated control.
This system consists of two ships cruising parallel to each
other on the same heading. The objective is that each ship’s
control agent manages the stability of its own ship roll motion
and observes the roll state for the other ship simultaneously
during the sea state in order to achieve global stability of the
entire system. There is no physical connection between the
two ships. The system state variables are the ship roll motion
angle θ and the angular velocity θ̇ . Let Si, i = 1,2 represent
the mathematical model of the two ships as shown in Fig. 4.
The ship models are described as

S1open-loop : ẋ1 =

[
0 1

−0.0288 0

]
x1+

[
0
1

]
u1 (17)

S2open-loop : ẋ2 =

[
0 1

−0.0029 0

]
x2+

[
0
1

]
u2 (18)

where x1 =
[
θ1 θ̇1

]T , x2 =
[
θ2 θ̇2

]T

Fig. 4. Ship Roll Motion Control

For each ship Si, i = 1,2 the control agent implements
a roll motion controller for local stability. The closed-loop
systems (17) and (18) are designed so that the eigenval-
ues of the closed-loop systems S1 and S2 are selected as
[−6.725±6.2832i] and [−5.1065±6.2832i], then both sys-
tems are individually locally stable. It is assumed that each
ship partially observes the state of the other ship, so that it
receives the neighbor agent roll sensor data via the communi-
cation media. Each agent maintains an interconnection with the
neighboring agent using connective strength γ1 and γ2 defined
by the closed loop equations
S1closed-loop-interconnected :

ẋ1 =

[
0 1

−84.7035 −13.4499

]
x1+

[
0 γ1
γ1 0

]
x2 (19)

S2closed-loop-interconnected :

ẋ2 =

[
0 1

−65.5551 −10.2131

]
x2+

[
0 γ2
γ2 0

]
x1 (20)

Each ship’s control agent (19) and (20) takes into
consideration its neighbor agent’s state. In the event of an
unstable agent, that agent will be isolated from the multi-agent
based connection network and the large-scale system retains
its global stability. It is obvious that appropriately determining

the connective strength γ for every agent is the key factor
to achieving the system global stability. In other words, the
agent needs to determine its connective strength γ prior to
making a connection to the other systems in order to maintain
its connective stability and the overall system stability as well.
The following illustrates the connective strength γ1 compu-

tation procedure for the system (19). Suppose the Lyapunov
function for system (19) is defined as

V (x1) = xT1Hx1 (21)

where H is a positive definite matrix. Then the system S1
will be connectively stable based on the determination of
γ1 = max{ λmin(G)

2λmax(H)}, subject to the Lyapunov matrix equation
revised as

ATHI+ IHAT =−G (22)

From the properties of Kronecker product of matrices, it
follows that

(I⊗A)Ĥ + (A⊗ I)Ĥ =−Ĝ (23)
Ĥ = −M−1Ĝ (24)

where M = I⊗A+A⊗ I, and Ĥ is the vectorized form of the
matrix H.
Hence, Ĥ equals to [0.3510,−1.500,−1.500,9.5581]T when

G was selected to be equal to 3I. This implies that the con-
nective strength is γ1 = 0.3062. Using the same computation
procedure, γ2 = 0.2997 is obtained. Simulation results illus-
trate that both ship roll control agents successfully stabilize
the ship roll motion when an initial disturbance is presented
as shown in Fig. 5.
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Fig. 5. Ship Motion θ and ω Control

Furthermore, additional simulation results show that since
the connective strength was properly chosen, the ship 1 roll
motion stabilizing performance was minimally impacted by
the roll oscillation of ship 2. These results are shown in
Fig. 6. However, if the connective strength are improperly
computed and the two subsystems are connected through these
wrongly computed γs, then the overall connected system will
be unstable. Fig. 7 illustrates that both ships are not converging
due to some erroneous γ computation. It is also worth stating
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that the stability of the subsystems S1 and S2 implies stability
of the overall large-scale system. For instance, if there is
an unstable subsystem to be connected to a stable neighbor
system, then the stable neighbor system will become unstable
and the large-scale system will be cascade-effect unstable.
Therefore the condition of overall system connective stable
is based on the stability of each connected subsystems and
properly choosing the connective strength factor for every
connected subsystem.
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VI. CONCLUSIONS AND FUTURE WORK
The connective stabilization problem for the multi-agent

based control of large-scale systems, which is constituted
by connecting local systems one after another serially, was
studied in this paper. Use of multi-agent control as the system
connective switch to tie local systems into a large-scale system
was introduced. Large-scale system stability through a multi-
agent based controller is obtained by taking vector Lyapunov
functions and computing the appropriate agent connective
strength. The method of the appropriate agent connective
strength for the multi-agent based connective stabilization
controller was developed. Most importantly, the computation
of the appropriate agent connective strength can be exe-
cuted at the local agent level, requiring minimal information

about the rest of the system. Furthermore, this method can
be expended to achieve system connectivity reconfiguration
without changing the control laws of the original system.
A numerical example also showed the effectiveness of this
developed method. The featured work could be extended to
utilize multi-agent based federated control to perform ship
collision avoidance.
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