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Abstract— This paper reports on the inclusion of a proba-
bilistic channel model within a cooperative localization plan-
ning framework. Underwater cooperative localization reduces
positioning errors by sharing sensor data across a team of
underwater vehicles. Relative range constraints between vehi-
cles are measured by the one-way-travel-time of successfully
received acoustic communication broadcasts. The quality of the
navigation solution is intimately linked to the geometry of the
network and, therefore, can benefit from planning informative
relative trajectories. We cast this planning problem as an
instance of belief space planning. In order to weight packet
loss over the acoustic channel, we introduce a probabilistic
channel model into the planning framework. We propose
an optimization algorithm that allows us to plan open-loop
control actions and, by extension, closed-loop parameterized
trajectories.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) integrate body-
frame velocity, attitude, and pressure depth measurements
for pose estimation. Bounded-error underwater localization
remains a difficult challenge since horizontal position is not
easily instrumented. Standard ground- or air-based position
references such as GPS are unavailable underwater. Static
acoustic beacon networks can provide an absolute position
reference but do not scale to large vehicle networks and can
be expensive to deploy [1].

Synchronous-clock cooperative localization enables teams
of underwater vehicles to observe their relative range by
measuring the one-way-travel-time (OWTT) of acoustic
broadcasts. Each vehicle fuses local sensor data and relative
range constraints to estimate its state. Navigation error can
then be bounded by the collective sensing capability of
the team. A variety of algorithms have been proposed to
perform distributed inference for cooperative localization [2–
5]. The overall quality of the navigation estimate, however,
is strongly dependent on the network geometry.

A single OWTT-derived range measures the distance
between a server vehicle’s time-of-launch (TOL) position
and a client vehicle’s time-of-arrival (TOA) position. In
this work, we assume that the client mission plan, i.e.,
desired trajectory, is available at planning time. Our goal
is to compute a practical server trajectory that minimizes the
predicted client uncertainty estimate through OWTT support.

Within OWTT cooperative localization there is an inherent
trade-off between communication success and localization
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Fig. 1: Cooperative localization example: a server vehicle ‘A’ or ‘B’ can
provide a relative range constraint (white arrows) to the client vehicle
(yellow). ‘A’ is more likely to make the range observation as evidenced
by the channel gradient (darker means higher probability of making a
measurement). ‘B’, however, provides more information in the horizontal
plane (as indicated by the thicker arrow). Our proposed planning framework
balances these objectives.

accuracy—increasing relative range diminishes the probabil-
ity of successful communication, but improves horizontal
position estimation, as illustrated in Fig. 1. Belief space
planning represents a principled approach to balancing stan-
dard path-planning objectives (e.g., minimum distance) with
motion and sensing uncertainty. Resulting paths seek infor-
mation in order to reduce state uncertainty and successfully
meet a task-specific objective.

Gaussian belief space planning solves a more general
partially observable Markov decision process (POMDP)
problem over linear Gaussian models. Most belief space
planning approaches, however, ignore that sensor measure-
ments may not be obtained, for example, because of a
lossy communication channel. We introduce a model of the
underwater acoustic communication channel into belief space
planning that allows a trajectory optimization algorithm to
find server paths that provide useful navigation information
and a higher fidelity communication channel (and hence
provide informative relative range observations).

The specific contributions of this work include:
• We propose a belief space planning framework for

server-client cooperative localization with a known
client mission plan.

• We exploit a modified observation likelihood function
that allows us to model randomness in obtaining mea-
surements. We then employ this modified observation
function to model the underwater acoustic channel.

• We propose an optimization algorithm for computing
locally optimal open-loop control actions or path pa-
rameters that represent practical AUV trajectories.

Additionally, we provide a channel model that is represen-
tative of data collected during AUV field trials. We then use



the channel model to demonstrate our planning framework
in several simulated scenarios.

II. RELATED WORK

Path planning problems typically seek a feasible path
from start to goal positions within a configuration space.
When state is not known deterministically, planning can be
formalized within a POMDP framework [6]. In this case,
objective functions are defined over the space of potential
distributions over state, called the belief space. Planning
methods must cope with uncertainty in motion, sensing, and
the surrounding environment. Due to the high dimensionality
of the belief spaces of real-world problems, solutions to
POMDP instances must typically be approximated [7].

Several prior approaches to belief space planning [8–
10] attempted to solve belief space planning problems
with sampling-based planners. They addressed uncertainty in
sensing, motion, or both. These methods involve constructing
candidate trajectories through the underlying state space by
random sampling, then searching over candidate solutions.
These algorithms find the best solution within the space
of candidate trajectories but do not explicitly optimize the
trajectory.

Recently, optimization motion planning has been applied
to belief space planning [11–13]. This paper builds off of
these methods in order to optimize over both open-loop con-
trol actions and parameterized trajectories. Several methods
[11, 13] assume maximum-likelihood observations in order
to achieve rapid replanning. Van den Berg et al. [12] drop
the maximum-likelihood assumption at the cost of greater
computational expense, but planning is performed off-line
and a control policy is executed at run time.

The related area of active simultaneous localization and
mapping (SLAM) research has focused on computing paths
that lead to lower uncertainty maps. Stachniss et al. [14]
presented an early particle-based approach to make infor-
mative decisions under uncertainty, integrating localization,
mapping, and exploration. Sim and Roy [15] proposed a
breadth-first search procedure for minimizing an A-optimal
objective on vehicle uncertainty. Recently, Indelman et al.
[16] merged optimization-based belief space planning within
active SLAM. They additionally modeled unknown observa-
tion events (similar in spirit to the channel model presented
here), but employed a simplification that results in a deter-
ministic state covariance.

The multiple vehicle coordination problem is well studied
[17], however, navigation for localization remains an open
challenge. Martinez and Bullo [18] proposed a heuristic
coordination algorithm for target-tracking with a range-only
sensor. Charrow et al. [19] similarly presented a target-
localization control policy using range-only sensors. The
most relevant approaches to the context of underwater range-
only localization include [20–22]. These prior works, how-
ever, do not include motion and sensing uncertainty and, in
some cases, consider only discrete action spaces. Moreover,
no prior work has modeled the communication channel,
although several authors have imposed a heuristic maximum

communication range, e.g., Tan et al. [21]. We propose a
principled method to incorporate channel behavior during
planning.

III. BELIEF SPACE PLANNING

The general planning problem we address in this work is
an instance of a POMDP, since both sensing and motion
are stochastic. We first state our problem instance within
a Gaussian belief space (§III-A). Then, we modify the
belief representation to handle nondeterministic observation
events (§III-B). Finally, we develop a planning framework
that leverages this modified belief representation (§III-C and
§III-D).

A. Gaussian belief space planning

Consider a system with state xk at time step k. The state
transition model captures uncertainty in executing an action,

xk+1 = f(xk,uk,wk), (1)

where uk is the control input, and wk ∼ p(wk|xk,uk) is an
independent noise disturbance with known density, assumed
here to be additive zero-mean Gaussian with covariance ma-
trix Mk. This transition model equivalently encodes the tran-
sition distribution p(xk+1|xk,uk) = N

(
f(xk,uk, 0),Mk

)
.

Observations are also random variables and modeled as

zk = h(xk,vk), (2)

where vk ∼ p(vk|xk) is an independent noise perturbation
with known density. We assume that the observation noise
is additive and drawn from a zero-mean Gaussian distri-
bution with covariance matrix Nk. The observation model
is then represented by the likelihood function p(zk|xk) =
N
(
h(xk, 0),Nk

)
.

The belief bk is the posterior distribution over state given
all observations and control inputs up to time k, i.e.,

bk = p(xk|Z1:k,U1:k−1), (3)

where Z1:k = {zi}ki=1 is the set of observations and
U1:k−1 = {ui}k−1

i=1 is the set of all control inputs. In §III-B,
we modify the observation and belief definitions to include
unknown observation events.

In this work, we consider a general quadratic cost function
over a trajectory comprised of the sum of a terminal cost and
stage costs over the beliefs and controls through time-horizon
L

min
B1:L,U1:L�1

E

[
b>
LQLbL +

L−1∑
k=1

b>
k Qkbk + u>

k Rkuk

]
,

(4)

where B1:L = {bk}Lk=1 is the set of belief states that
satisfy the relationship in (3), and the expectation is taken
with respect to the random observations, Z1:L. The cost
weight matrices Qk and Rk are positive semi-definite and
positive definite, respectively, and prescribe a preference for
small deviations from a nominal belief and control. Quadratic
(or approximately quadratic) cost functions are commonly



employed in belief space planning problems for the relative
ease with which they can be minimized.

Computing the optimal solution to a cost function over
belief states is generally intractable because of the high
dimensionality of the space of all beliefs. Under the assump-
tion of additive Gaussian noise and locally linear models,
however, a belief is then approximately Gaussian and can
be parameterized by the state mean x̂k and vectorized
covariance matrix Σk,

bk =
[
x̂>
k , vec(Σk)

>
]>

. (5)

The vec( · ) operation exploits the symmetry in Σk. This
Gaussian parameterization enables tractable optimization.

Our strategy closely follows previous methods for deriving
an analytical belief evolution and optimizing the resulting
trajectory [12, 23]. We proceed in two steps. First, we
derive the belief dynamics, which define the belief transition
distribution p(bk+1|bk,uk). Second, we use the predictive
belief dynamics to minimize a cost function over beliefs and
controls (4). Our approach differs from the aforementioned
works with the introduction of a channel model and uses an
alternate optimization formulation that can be extended to
consider parametric trajectories.

B. Belief dynamics with uncertain channel state
Prior belief space planning methods assume that the set

of future observation events is known. Whether or not an
observation is made, however, is often not known before
execution time. For example, the set of range observations
that occur in an underwater acoustic network depends on the
(unknown) set of successful acoustic transmissions.

To address this, we introduce a binary channel state
variable, γk ∼ Bernoulli(λk), which models the event that
an observation is received at the kth time index. Sinopoli
et al. [24] introduced an equivalent model for studying
convergence properties of the extended Kalman filter (EKF)
error covariance in sensor networks with fading channels.
We modify the observation model (2) by conditioning on
the channel state variable ‘switch’

p(zk|xk, γk) = N
(
h(xk, 0), γkNk + (1− γk)σ

2I
)
, (6)

where we take the limit as σ2 → ∞. If the observation is
received (γk = 1), the revised model is exactly (2). When
the observation is not received (γk = 0), the observation has
infinite uncertainty or, equivalently, zero information. Note
that the observation model is still represented by a Gaussian
distribution.

The belief now represents the posterior distribution over
state given all channel states in addition to observations and
control inputs

bk = p(xk|Γ1:k,Z1:k,U1:k−1), (7)

where Γ1:k = {γi}ki=1. By leveraging the Markov property
of the state transition model, the belief dynamics can be
computed within a recursive Bayes filter

bk+1 = p(xk+1|Γ1:k+1,Z1:k+1,U1:k) (8)
= ηp(zk+1|xk+1, γk+1)p(xk+1|xk,uk,Γ1:k,Z1:k),

where η is a normalization constant and we assume that
the set of channel states is independent of the state, i.e.,
p(γi|xi) = p(γi). While the channel state may certainly de-
pend on the underlying state, we have assumed independence
to simplify the belief dynamics and so that the belief is not
informed by whether or not an observation is received—
the channel model is only used at planning time and is
uninformative during execution.

We track the evolution of belief states (8) with an EKF.
We evaluate the state prediction and measurement update in
the limit by substituting the observation model (6) into the
Bayes filter (8). The resulting EKF update given the current
belief closely follows the standard EKF update

x̂k+1 = f(x̂k,uk, 0) + γK
(
z− h

(
f(x̂k,uk, 0), 0

))
(9)

Σk+1 = (I− γKH)Σ̄ (10)

F =
∂

∂x
f(x̂k,uk, 0)

H =
∂

∂x
h(f(x̂k,uk, 0), 0))

Σ̄ = FΣkF
> +Mk

K = Σ̄H>(HΣ̄H> +Nk)
−1,

where we have dropped the subscripts on zk+1 and γk+1 for
brevity. Sinopoli et al. [24] present the equivalent update,
although derived by first constructing the joint distribution
over predicted state and observation and then conditioning
on the observation. Within the update equations, the channel
state variable multiplies the Kalman gain, resulting in an
intuitive behavior—the standard Kalman update when the
measurement is present, and an uncorrected process predic-
tion otherwise.

The belief dynamics defined within the EKF update are
random in the current observation and channel state, z and
γ, respectively. For tractable planning, we approximate the
belief state transition with a Gaussian transition model

bk+1 = g(bk,uk) +W(bk,uk)wk, (11)

where wk ∼ N
(
0, I

)
. Since γ is not Gaussian, we compute

the above expression by moment matching, i.e., the first two
moments of (11) are set to that of (9)–(10),

g(bk,uk) = E[bk+1] = E

[
x̂k+1

vec(Σk+1)

]
(12)

=

[
f(x̂k,uk, 0)

vec(Σ̄− λKHΣ̄)

]
W(bk,uk) =

√
Var[bk+1] =

√
Var

[
x̂k+1

vec(Σk+1)

]
(13)

=

[√
λKHΣ̄ √

λ(1− λ)vv>

]
v = vec(KHΣ̄),

where E[γ] = λ and
√
· is a suitable matrix square-root

factor.



Algorithm 1 Belief space trajectory optimization.

Require: b1, Ū
(0) {initial belief and nominal control}

1: while not converged do
2: b̄

(i)
k+1,Ak,Bk,Wk = execute(b̄

(i)
k , ū

(i)
k ) for all k

3: G, J,W = construct system({b̄k,Ak,Bk,Wk})
4: δU∗ = solve objective(Q,R,G, J,W)

5: Ū
(i+1)

= line search(Ū
(i)
, δU∗)

6: end while
7: return Ū

(i)

Van den Berg et al. [12] present a similar belief dynamics
formulation, although they have not considered random ob-
servation events. Under their model, the portion of the belief
state vector corresponding to the state covariance matrix is
deterministic, i.e., no random variables appear in the EKF
covariance update when observation events are known. Here,
the covariance depends on γ, and is therefore random. When
an observation is guaranteed to be obtained, however, λ = 1
and (11) is equivalent to the belief dynamics in [12].

The belief dynamics (11) represent the predictive transition
of a belief state with random observation events. Kim and
Eustice [25] and Indelman et al. [16] both considered the re-
lated problem of planning with unknown loop-closure events
within active SLAM. Both parameterize Gaussian beliefs
in the information (inverse covariance) form for which the
measurement update is a simple additive step. Indelman et al.
[16] (approximately) marginalize over γ in the posterior,
as opposed to taking the expectation with respect to γ,
resulting in a deterministic information (covariance) matrix.
It is also worth noting that the belief dynamics are not
invariant to belief parameterization. In the information form,
as in [16, 25], the measurement information is scaled by λ,
whereas, here, the Kalman gain is scaled instead.

C. Belief space optimization motion planning

We use the belief dynamics defined in (11) to compute
a locally optimal solution to the cost function defined by
(4). Previously, van den Berg et al. [12] solved a similar
objective using dynamic programming to obtain a control
policy. Approaching the optimization as a batch process
instead allows us to easily optimize over path parameters
assuming a known path-following controller—desirable for
planning practical trajectories for AUVs.

The cost function (4) can be expressed in batch as a
function of the stacked vectors of beliefs and controls

min
B,U

E
[
B>QB+U>RU

]
, (14)

where we have dropped the subscripts on B1:L and U1:L−1,
Q = diag(Q1, . . . ,QL), and R = diag(R1, . . . ,RL−1).
We take a sequential approach [26]—compute the set of
beliefs satisfying the belief dynamics as a function of control
actions, substitute into the objective function, and solve for
the minimizing set of control inputs.

We first linearize each belief transition around a nominal
trajectory B̄1:L and control sequence Ū1:L−1

δbk+1 ≈ Akδbk +Bkδuk +Wkwk, (15)

where δbk = bk − b̄k, δuk = uk − ūk, and Ak and
Bk are the Jacobians of g(bk,uk) with respect to bk and
uk, respectively. Note that B̄1:L is obtained by executing
g( · ) along the nominal control trajectory given b1. We also
linearize W(bk,uk) such that the ith column can be written

W
(i)
k ≈ F

(i)
k δbk +G

(i)
k δuk + W̄

(i)
k (16)

and W̄
(i)
k = W(i)(b̄k, ūk). Note that Wk is a function of

the channel model with parameter λk. In §V we discuss the
form of λk, which depends on the state. During planning,
we evaluate λk about the nominal trajectory.

We can write the stacked vectors of belief state and control
deviations as

δB = [δb>
1 , . . . , δb

>
L ]

> (17)

δU = [δu>
1 , . . . , δu

>
L−1]

>. (18)

The batch belief dynamics are then expressed by concatenat-
ing (15) over the time horizon

δB = AδB+BδU+Ww

δB = (I−A)−1B︸ ︷︷ ︸
G

δU+ (I−A)−1W︸ ︷︷ ︸
J

w, (19)

where w is the stacked vector of noise perturbations wk and
the stacked Jacobians are defined

A =


0
A1 0

0
. . . . . .
0 AL−1 0

 (20)

B =


0
B1 0

0
. . . . . .
0 BL−1

 (21)

W =


0
W1 0

0
. . . . . .
0 WL−1

 . (22)

We substitute the batch belief dynamics (19) into the cost
function (14) and evaluate the expectation

min
δU

[(GδU+B̄)>Q(GδU+B̄)+(δU+Ū)>R(δU+Ū)

+ tr(J>QJ)],

which is equivalent to

min
δU

[(GδU+B̄)>Q(GδU+B̄)+(δU+Ū)>R(δU+Ū)

+
∑

i

(
(F(i)G+G(i))δU+ W̄(i))>(I−A)−>Q

(I−A)−1
(
(F(i)G+G(i))δU+ W̄(i))].

This cost function is quadratic in the control update term,
δU, and can therefore be minimized by taking the derivative
of the cost and setting to zero

δU∗ = −D−1E, (23)



where

D = G>QG+R+
∑

i(F
(i)G+G(i))>C(F(i)G+G(i))

E = G>QδB+
∑

i(F
(i)G+G(i))>CW̄(i)

C = (I−A)−>Q(I−A)−1.

We leverage the sparsity structure of W(i) to efficiently
compute the summation terms. Note that the Hessian is
positive definite by construction because of the cost weight
matrices. The updated control vector is computed by adding
the update to the control at the current iteration

U(j+1) = U(j) + εδU∗, (24)

where ε defines the step length based on a simple back-
tracking line search. The control update step is repeated
until a convergence criteria is satisfied. The full algorithm
is outlined in Algorithm 1.

D. Parameterized trajectory optimization

In the previous section, we described a method to compute
a sequence of open-loop control actions over a finite horizon.
He et al. [23] proposed planning over macro actions (a col-
lection of sequential actions) to reduce planning complexity,
and allow planning over a longer time horizon. Planning
over path parameters, similar to macro actions, has also been
studied by Sim et al. [27]. Here, we apply an optimization
over parameterized paths for planning.

For AUV field trials, we desire simple, practical trajecto-
ries in order to easily monitor vehicle health and progress. To
address this, we assume that each vehicle employs a feedback
path-following controller and optimize over parameters that
define a trajectory. For example, a center position and radius
define a circular path. The control is then a (known) function
of the estimated vehicle state and path parameter vector θ.
The state transition model (1) can be expressed given the
controller and parameter vector as

xk+1 = f(xk,uk(x̂k,θ),wk). (25)

We iteratively update locally optimal path parameters in
the same way control actions were computed. In this case,
Jacobians are computed with respect to the path parameters
instead of control actions. Finally, we penalize parameter
weights (instead of control) within the cost function to
ensure a positive definite Hessian. The number of parameters
to specify a path is, in general, much smaller than the
number of control actions. Therefore, there is also significant
computational savings in optimizing over path parameters.

IV. PLANNING FOR COOPERATIVE LOCALIZATION

Here, we detail the instantiation of the belief space plan-
ning algorithm developed in §III to plan a server trajectory
to localize a client vehicle. We require that the nominal
client trajectory and path-following controller are available
at planning time. We further assume that the client vehicle
is able to reconstruct the centralized server-client estimator
and that communication latency is negligible.

The state space system is represented by the stacked server
and client vehicle states xk = [x>

sk
,x>

ck
]>. The state space

dynamics of each vehicle are independent and written[
xsk+1

xck+1

]
=

[
fs
(
xsk ,usk ,wsk

)
fc
(
xck ,uck ,wck

)] , (26)

where usk represents the only decision variable control
action within the planning problem since uck is computed
by the client’s path-following controller and a given mission
plan.

Relative range constraints constitute a nonlinear observa-
tion over the server-client state

zrk =
∥∥xsk − xck

∥∥
2
+ wrk , (27)

where wrk ∼ N
(
0, σ2

k

)
. In general, range observations will

be a 3D slant range measurement. Within a linear estimator,
such as the EKF, range observations add information in
one direction: along the vector between the server and
client vehicle positions. For underwater navigation, depth is
usually well instrumented, so we seek to minimize horizontal
position errors. Therefore, the range measurement utility is
highest when the server and client vehicles are far apart, i.e.,
the vector of added information is approximately parallel to
the horizontal plane.

In all simulations presented in this paper, we use a cost
function that penalizes control action and client vehicle un-
certainty. Unlike many planning problems, there is no desired
terminal state for the server. We can define a quadratic stage
cost penalizing client uncertainty fitting the form of the
objective in (4)

tr(Σck) = m>bk

tr2(Σck) = b>
k mm>︸ ︷︷ ︸

Qk

bk, (28)

where m> is a row vector that sums the diagonal elements
of the covariance matrix corresponding to the client vehicle
from the belief state. We simply penalize the control action
with Rk = I.

V. NUMERICAL SIMULATIONS

We first present an empirical channel model informed by
reception statistics collected during AUV field trials. We then
validate our planning framework through several simulated
scenarios where we employ this channel model for planning.

A. Empirical channel model

In this section, we review how we compute the distribution
over channel states p(γk = 1) = λk. Physics-based and
empirical models exist for studying communication error
in underwater channels. One such empirical channel model
proposed by Stojanovic [28] was used by Hollinger et al.
[29] for studying multiple vehicle coordination. Within the
model, the probability of successful transmission is written
as a function of the transmit frequency, power, and environ-
mental conditions. In this work, we are interested in showing
how a channel model can be integrated into the planning
framework. As such, we employed a simplified model where
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Fig. 2: Reception rate data and channel state model. The histogram
represents the frequency of successfully received acoustic broadcasts. The
channel model, λ, illustrates (29) tuned to the environment.

the probability of successful reception falls off as a sigmoid
with the horizontal range, r =

∥∥xs − xc

∥∥
2
, between server

and client

λk(r) = p(γk = 1)

=

[
1 + exp

{
1

τ
(r − r̄)

}]−1

, (29)

where r̄ is the range at which reception probability is 1
2 and

τ is the length scale that defines the rate at which reception
decreases.

We manually fit the parameters of this simple model to
data collected over the course of several field trials. We
fielded two Iver2 AUVs and a surface ship. Each vehicle
was equipped with a Woods Hole Oceanographic Institution
(WHOI) Micro-modem and co-processor board [30], 25 kHz
BTech Acoustics 2RCL transducer, and a synchronous-
clock reference. Each vehicle periodically transmitted Micro-
modem Rate 1 and 2 data packets which each consist of three
64 B phase-shift keying (PSK) encoded data frames.

Over the course of three trials, we collected over 3000
range observations. The trials were conducted in shallow
water (roughly 20 m) with all transducers suspended at
approximately 10 m. While the true inter-vehicle range is
unknown, we estimated range from the filtered online vehicle
position estimates in post process. The inter-vehicle range
did not exceed 400 m. Fig. 2 shows the channel model
(29) overlaid on a histogram of reception frequencies for
varying relative range, where the channel model matches the
characteristic behavior of the true channel.

B. Simulation: static beacon localization

Our first set of simulations helps illustrate the planning
problem for a simple scenario—compute a server trajec-
tory to localize a static beacon. This is a special case
of server/client localization in which the client vehicle is
fixed, and, hence, does not accrue any additional uncertainty
over time. This problem is akin to surveying long-baseline
(LBL) network beacons. Jakuba et al. [31] recommend that
the topside ship circle the beacons at a fixed radius (up
to water depth), providing a heuristic to balance position
information and communication. Below, we vary relative
depth and channel parameters to demonstrate that the planner

adapts to different conditions, balancing communication and
navigation utility.

We assume that the server vehicle follows a simple unicy-
cle model. The server translates a fixed distance, ∆, for each
timestep with control defined by a change in heading, uk,
perturbed by zero-mean independent Gaussian noise wk. The
server state is parameterized by its (x, y) horizontal position
and heading θxsk+1

ysk+1

θsk+1

 =

xsk +∆cos(θsk + uk + wk)
ysk +∆sin(θsk + uk + wk)

θsk + uk + wk

 .

The beacon (client) state is simply its (x, y) position. Fol-
lowing each motion step, the server vehicle observes its
own position and orientation and the range to the beacon
(depending on the channel state).

We optimized over open-loop control actions (‘control’ in
Fig. 3) and parameterized circular paths (‘circle’ in Fig. 3).
For the open-loop control trajectories, the server vehicle
was initialized in the same position for each trial with
constant fin angle producing a partial circle around the bea-
con (although a straight line initialization also converged to
circular trajectories). For the parametric circular trajectories,
the initial radius was set to 50 m. Fig. 3 illustrates planned
server trajectories for varying channel model and relative
depth parameters over 50 planning steps. The top row in
Fig. 3 demonstrates that our planning framework responds
to varying channel parameters. The bottom row shows that
information added by each range measurement changes as
a function of relative depth between the server and beacon.
As the relative depth increases, the server must move farther
away in order to localize the beacon. The run times of our
non-optimized Python code are listed below each figure.

These simulations also help to illustrate the utility of
parameterized trajectories, provided that the path type is
well informed by experience. For this simplified scenario,
the planned control and parameterized circle paths do not
differ significantly and agree with heuristic LBL localiza-
tion methods, i.e., that circular trajectories provide efficient
localization.

C. Simulation: server/client localization

In the second set of simulated trials, we consider two mo-
bile AUVs—a server and client—and show that the planning
framework scales to realistic mission profiles. Each vehicle’s
state is parameterized by its (x, y) horizontal position and
heading θ. We assume a constant forward velocity so that
over a fixed time step, the change in position is ∆. The state
dynamics follow a simplified bicycle model with steering
angle control input ukxsk+1

ysk+1

θsk+1

 =

 xsk + (∆+ w∆k
) cos(θsk)

ysk + (∆+ w∆k
) sin(θsk)

θsk + α(∆ + w∆k
) tan(uk + wuk

)

 ,

where α is the reciprocal ‘wheel-base’ length and w∆k
and

wuk
represent Gaussian noise perturbations in the step length

and control, respectively.
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(a) Baseline scenario with channel model.
Control: 84 s (16), Circle: 19 s (8).
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(b) More restrictive communication channel.

Control: 180 s (49), Circle: 26 s (6).
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(c) Less restrictive communication channel.
Control: 43 s (10), Circle: 38 s (25).
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(d) Baseline with depth information.
Control: 84 s (16), Circle: 19 s (8).
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(e) 10 m relative depth.
Control: 124 s (36), Circle: 18 s (7).
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(f) 1000 m relative depth.
Control: 700 s (149), Circle: 34 s (10).

Fig. 3: Example planning for static beacon localization. Top row shows planned trajectories with the underlying channel model using the baseline relative
depth (color gradient in top row represents communication channel quality, darker is better). Bottom row plots range information using the baseline channel
model (color gradient in bottom row represents range information, darker is better). Planning run times are listed below each figure with number of iterations
in parentheses.

We are provided the client survey trajectory at planning
time. The estimated survey time is 76 min and is represented
by roughly 5000 state transitions. The relative vehicle depth
is 100 m and the channel model parameters are r̄ = 250 m
and τ = 125 m. By optimizing over ‘diamond’ path pa-
rameters (center position, width, height), we reduce the
complexity of the problem from several thousand control
actions to just four path parameters. Each vehicle relies on
a pure-pursuit path-following controller. We also compared
the optimized path to a naı̈vely planned path, which we have
employed in several previous cooperative localization field
trials. We set the parameters of the naı̈ve path to be centered
on the client survey area and span the length and width of
the survey area. The naı̈ve path parameters were used to
initialize the optimization.

Fig. 4 depicts the planned trajectory for each vehicle.
Table I summarizes the performance of each path averaged
over 100 simulated trials. Overall, the optimized path re-
ceives more OWTTs per trial than the naı̈vely planned
trajectory. Moreover, the client uncertainty (indicated by the

TABLE I: Average performance comparing an optimized path and a
naı̈vely planned path over 100 simulated trials.

METHOD OWTTS RECEIVED |Σck | tr(Σck )

Proposed (optimized) 67.6 0.40 69.56
Naı̈vely planned 62.9 1.60 402.34

determinant and trace in the table) is far lower for the
optimized path. The optimized server path remains closer
on average to the client, and thus is able to more reliably
make OWTT observations.

VI. CONCLUSION

Cooperative underwater localization enables teams of ve-
hicles to exploit range observations to improve their naviga-
tion estimates. The quality of the estimate, however, depends
on the relative position of the vehicles. Therefore, planning
relative paths can benefit online navigation performance. We
have presented a probabilistic channel model that represents
randomness in observation events. The channel model holds
potential utility in other applications involving unknown
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Fig. 4: Optimized (red) and naı̈vely planned (green) server trajectories.

measurement acquisition. We then integrated the model into a
belief space planning framework that optimizes either open-
loop control actions or path parameters in order to produce
practical AUV trajectories.
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