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Abstract—Large-scale systems refer to systems that consist
of many interdependent local systems. Conventional centralized
control schemes are not suitable for such large-scale systems
due to global dynamic behavior complexity and computational
difficulties. This paper introduces a general framework of agent-
based federated control motivated by the political structure where
partially self-governing states are united by a federal government.
Likewise, a multi-agent based federated control system is com-
posed of local autonomous subsystems that cooperate to provide
an overall system behavior. Formation stability and trajectory
tracking control of a group of autonomous agents is designed
based on this concept. Decentralized cooperative federated con-
trollers are developed for each individual agent. Simulations show
that the overall system is globally asymptotically stable to track
a time-varying trajectory with a pre-designated formation for a
group of nonlinear dynamic agents.
Index Terms—Multi-agent control, federated systems, large-

scale systems, stability

I. INTRODUCTION

System control is a growing research area with many in-
novative techniques being introduced. During the past decade,
most research work focused on systems with first or second
order linear or nonlinear dynamics [1] [2] [3]. Today’s
systems are greatly advanced and complex, and demand more
flexibility on system configurations and control schemes. Cur-
rent control research is focused on systems with complex
dynamics that are often classified as large-scale systems.
Large-scale systems refer to systems that consist of several
interconnected local systems, which may be coupled in some
sort of configuration for a common performance goal. A
large scale dynamic system is typically operated under high
dimensionality of state variables and requires high complexity
of computation. When designing a large-scale system, it is
often more effective to consider the system as a collection
of several subsystems, and then to design each subsystem
and their relationships [4]. To analyze the stability of large
systems, one approach is to determine if the smaller systems
are input-output reachable and controllable. Control design
of complex large-scale systems cannot be done using con-
ventional centralized techniques because of complexity of
their dynamic behavior as well as computational difficulties.
In addition, implementation of traditional centralized control
is also problematic since any small change in the system
dynamics will require a complete redesign of the centralized
controller. It is clear that centralized control paradigms cannot
meet the challenges of global performance requirements and

stability.
For control of large-scale interconnected systems, it is

typical to have some form of decentralized control archi-
tecture. These large-scale control systems have several local
controllers, which observe only local outputs and control only
local inputs, according to the performance requirements of
the local systems. Each local controller is only involved in
the local system control operation, yet the local controllers
may be interconnected on some level of the global system.
Therefore, the performance of each local controller effects the
overall system performance and stability. But, these traditional
decentralized methods can have flexibility and scalability
issues.
With the rapid growth in high performance computing and

communications technology, new theoretical and application
issues are arising as a result of current trends in distributed
control, such as multi-agent based control. One of the key
objectives of agent-based control is to use the decentralized
approach but guarantee local and global closed loop stability,
while reducing the control systems’ computational load that is
related to a centralized approach. Sycara [5] defined “a multi-
agent system as a collection of autonomous agents that interact
with each other and their environment for the purpose of
accomplishing a common objective”. In other words, a multi-
agent system is “a loosely coupled network of problem solvers
(agents) that interact to solve problems that are beyond the
individual capabilities or knowledge of each problem solver”
[6]. Multi-agent systems can manifest self-organization and
complex behaviors even when the individual strategies of
all their agents are simple [7] [8] [9]. The decentralized
control allocates the processing power among agents and gains
the complex behavior out of simplistic agents. Benefits of
multi-agent cooperative control include improving robustness,
reliability, intelligence, performance, and flexibility of large-
scale systems.
In the past few years, multi-agent concept studies

are generally focused on the development of decentral-
ized control laws in order to reach a global objective
[10] [11] [12] [13] [14] [15] [16]. A common technique is for
agreement to be reached between agents through “consensus”
regarding a certain quantity of interest that depends on the state
of all agents [17]. Many researchers find that agent-based con-
trol is suitable for decentralized cooperative control. However,
common agent-based control methods may be too simple to
explain sub-system dynamic behaviors. Agent-based control
normally models each sub-system as a particle and ignores
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the sub-system (local) dynamics. An important study in multi-
agent systems is the development of cooperative behavior
between agents that have a shared goal. Multi-agent formation
and cooperative control can play an important role in military
applications. Cooperative control of multiple aerial, surface,
or underwater vehicles has important applications for the U.S.
Navy. These applications include fleet navigation, transporting
loads, search and rescue operations, etc. Cooperative control
systems also appear often in nature. Examples include flocks
of birds, schools of fish, and cooperative ant colonies. Re-
cently, there has been close cooperation between engineers
and biologists for better modeling and understanding of the
complicated behaviors of creatures in nature [10]. Connective
stability has been also considered by many researchers [18].
In this paper, decentralized cooperative federated controllers

are developed for each individual agent. Simulations show
that the overall system is globally asymptotically stable when
tracking a time-varying trajectory with a pre-designated for-
mation for a group of nonlinear dynamic agents. The paper is
organized as follows: Section II introduces the basic notion
of federated control. Control system formulation for federated
control is presented in Section III and its stability in Section
IV. Section V presents simulation results that illustrate the
concept. The paper is concluded with some final remarks in
Section VI.

II. FEDERATED CONTROL ARCHITECTURE

This paper investigates a new concept of control: federated
control, motivated by the political structure of a federal
government. Each state of the union maintains some level of
political autonomy and at the same time must comply with
the federal government policies. Likewise, a multi-agent based
federated control system is composed of local autonomous
entities (agent-based controllers) that cooperate to provide
an overall (a large-scale) system behavior. Each agent based
controller maintains its own local stability and has partial
observations of the state of other agents. The agents execute
their local control laws in order to satisfy the performance
requirements at the overall system level.
In this concept, each agent represents an individual inde-

pendent complete dynamic process with its own control law,
which is interconnected with its appropriate neighbor agent(s).
Interconnection of the agents through a communication net-
work forms the federation in a distributed large-scale complex
system. Fig. 1 illustrates this concept.
The novel concept of federated control with multi-agents

provides the capability to revolutionize the system require-
ments dynamically. It enhances the overall system perfor-
mance robustness. Agents will negotiate their local and global
stability constraints following a federated “Goal”. The global
“Goal” at the federal level is communicated to the agents
via the communication network. The attributes of this “Goal”
could be an output-input function, state equality constraints,
input inequality constraints, cost function, or control logic,
etc. Each agent makes its control decision independently and
adjusts its controller accordingly upon receiving the federal
“Goal” request and the state information from other agents

Fig. 1. Multi-agent Federated Control System

at the local level. The agent could reject the “Goal” request
if its local stability is threatened. Agents are self-aware, self-
interested and self-protective to maintain their own stability,
but the overall system stability will be satisfied as well.

III. FEDERATED CONTROL FORMULATION

The control goal is to design a federated, multi-agent based
controller for each local system and guarantee connective
stability of the overall system. The concept of connective
stability requires that the system remains stable in the sense of
Lyapunov under structural perturbation [19], whereby local
systems are disconnected and connected again in unpredictable
ways during operation. The objective of multi-agent based
federated control and the stability analysis is to prove that there
exist vector Lyapunov functions for each of the individual
local systems and that the vector sum of these Lyapunov
functions is a Lyapunov function for the overall connective
system. In the large-scale interconnected system, a vector
Lyapunov function provides an extremely flexible stability
analysis framework since each sub-system of the vector Lya-
punov function can satisfy less strict requirements compared
to single scalar Lyapunov functions. Hence, it is preferred to
use a vector Lyapunov function to develop the control design
of a large-scale interconnected system and prove stability
[20] [21] [22] [23].
An interconnected system of agents can be mathematically

represented by

Si : ẋi = fi(t,xi)+ui i ∈ {1, · · · ,N} (1)

where N is the number of independent agents with local
dynamics Si. The control input has two components defined
as ui = uLocal Controli + uAgent Controli , where the Local Control
is determined to maintain the local subsystem stability and
other performance requirements, whereas federal performance
requirements are guaranteed by the Agent Control. The agent
controller, uAgent Control, is the decision processing component
at the federated level as illustrated in Fig. 2.
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Fig. 2. Structure of an Agent

We assume that each agent is connected through
uAgent Control. The overall system is composed of the team of
agents which work together to provide a flexible framework
to achieve total system stability. A general form of the i-th
agent controller to achieve the federated control performance
is defined as

uAgentControli =−γ1 ∑
j∈N
ai j(xi− x j)︸ ︷︷ ︸

Consensus term

−γ2ai∗(xi− x∗)︸ ︷︷ ︸
Federated term

(2)

where γ1,2 are the interconnection strengths, and x∗ is the
federated policy state. The agents can use the consensus term
to determine whether or not to connect to the neighbors

ai j =

{
1, system Si is connected to system S j
0, system Si is not connected to system S j

(3)

The federated goal is a self-contained system that does not
require state information from other agent. Its dynamics are
represented by

S∗ : ẋ∗ = f (t,x∗) (4)

and all agents are expected to obey the federated goal. In this
context, the trajectory x∗ is the desired performance goal at
the federated level.
The overall system performance goals are achieved by the

federated term. In this paper, “follow the trajectory x∗” is
considered to be a federated goal. Also note that agents receive
the federated goal through the interconnection ai∗ and pass it
to other agents through consensus. Connection to the federated
goal is defined by

ai∗ =

{
1, system Si follows the system S∗

0, system Si does not follow the system S∗
(5)

Although the overall system can be constructed by many
simple agents, the controllers ui for each agent are not identical
due to the inclusion of the federated and consensus terms.
Therefore, the examination of the system’s interconnected
stability under such multi-agent controllers must be conducted.
The interconnection weights γ1 and γ2 must be determined to
maintain each agent’s performance while achieving federated
goal.

IV. STABILITY ANALYSIS

Many physical systems are nonlinear systems, thus analysis
of nonlinear dynamics should be considered. The combination
of sub-system connectivity topology and nonlinear dynamics
is the major challenge. Stability analysis of continuous-time
coupled nonlinear systems based on graph theory and dis-
crete set-valued Lyapunov functions was developed by [24].
Lyapunov stability theory was also utilized to design coop-
erative control for nonlinear systems with a time-varying bi-
directional communication network [25]. It is desired that all
the outputs of the dynamical systems converge on consensus
as fast as possible. The interaction coefficients, such as the
weights on the edges and between the vertices in the multi-
agent systems, are optimized in [26]. However, the optimiza-
tion criteria commonly used are the asymptotic exponential
speed of convergence or pre-defined potential functions; such
approach might not be the sufficient pertinent criterion over all
applications [27]. Therefore, we attempt to derive a general
method to obtain the sub-system connective strength in order
to maintain the overall system stability.
This section demonstrates how a simple control law for

each agent can guarantee stability of the overall system. We
consider a multi-agent system composed by N agents, moving
on a plane. The dynamics of each agent i are given in (1).
In this multi-agent system, the agents are connected to other
agents and some of the agents also receive the federated goal.
The goal is to maintain global stability of the complete system.
The multi-agent system can be represented by a directed graph
G(t) = (V,E,A), consisting of a set of vertices, or nodes,
denoted V= {n1,n2, · · ·nN} and indexed by the agents in the
group, and a set of edges, E = {(ni,n j) ∈ V× V : ni �= n j}
containing an ordered set of distinct vertices that represent the
neighboring relations. An edge E = (ni,n j) means that agent
j receives information from agent i in G, and the agent j will
regulate its states based on its relationship to the states of
agent i. A spatial adjacency matrix A = A(G) = [ai j] ∈ Rn×n
is a weight matrix defined as ai j = 1, if (i, j) ∈ Ni and ai j = 0
otherwise. The degree matrix of G is a diagonal matrix D= [di]
with di = ∑

j∈Ni
ai j, and Ni =Ni(G) = { j ∈ ν : (i, j) ∈ Ei}, where

ai j = a ji in an undirected graph and ai j �= a ji in a directed
graph. The element number of set Ni is the communication
neighbor set of agent i. It indicates the number of edges
connected to agent i, denoted by di. The Laplacian for the
directed graph G is L = D−A. It is also worthwhile to note
that the Laplacian L is not only positive semi-definite but also
has one zero eigenvalue [28].
In the federated control concept, the federal “Goal” is

handled outside of the group of agents. For that reason, the
federal policy handler is introduced as node n+1 (or ∗). One
special property of this federal policy handler is that it is
directly connected to some of the nodes in G and delivers the
federal goal to these nodes. For the purpose of this stability
analysis, the Laplacian of the federated control graph, Gn+1,
is defined as
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Ln+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n

∑
j=∗,1

a1 j −a12 · · · −a1n −a1∗

−a21
n

∑
j=∗,1

a2 j · · · −a2n −a2∗

... · · ·
. . .

...
...

−an1 −an2 · · ·
n

∑
j=∗,1

an j −an∗

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

and can be partitioned as

Ln+1 =

[
H a∗
0 0

]
(7)

The Laplacian of the directed graph Gn+1 has zero row sum
and non-positive diagonal elements. Also Ln+1 is a diagonally
dominant matrix with zeros in the last row. Obviously, Ln+1
has exactly one zero eigenvalue and all nonzero eigenvalues
are in the open left half plane since the directed graph Gn+1
has a spanning tree [29]. As a result, the matrix H has no zero
eigenvalues. From the Gershgorin Disk theorem [30] [31],
all the eigenvalues λH of H are located in the union of n disks
as

‖ λH −
n

∑
j=0
ai j ‖≤

n

∑
j=1
ai j ‖= ri (8)

where ri :=
n

∑
j=1
j �=i

| ai j |, i= 1, · · · ,n.

Since ai j ≥ 0, that implies
n

∑
j=1
j �=i

| ai j |=
n

∑
j=1
j �=i

ai j. The Gershgorin

Disk theorem in (8) obtains

ai0 ≤ Re(λ )≤ ai0+2
n

∑
j=1
ai j (9)

Therefore, the Re(λH) ≥ 0 as a result of (9), where there
exists a symmetric positive definite P ∈ R

n×n satisfying the
Lyapunov function PH+H ′P. Furthermore, it concludes that
λmin(PH+H ′P) > 0.
Next, note that the nonlinear function ẋi = fi(t,xi) satisfies

the Lipschitz conditions

| f (t,x)− f (t,y)| ≤ κ |x− y|
| f (t,x)| ≤ κ(1+ |x|)

(10)

which must hold at least locally in R
n so as to guarantee the

existence of a solution of the system (1).
To analyze the federated control, let us define the agent

tracking error as x̂i = xi − x∗ in (2), where the desired
trajectory x∗ is the state of federated goal in (5). Then (1)
with the controller ui can be re-written as

x̂i =−γ
(
∑
j
ai j(x̂i− x̂ j)+ai∗x̂i

)
+ f (t,xi)− f (t,x∗) (11)

where x̂i ∈ R
n. For notational simplicity, define

x̂=

⎡
⎢⎢⎢⎣
x̂1
x̂2
...
x̂N

⎤
⎥⎥⎥⎦ (12)

F(t, x̂) =

⎡
⎢⎢⎢⎣
f (t,x1)− f (t,x∗)
f (t,x2)− f (t,x∗)

...
...

f (t,xN)− f (t,x∗)

⎤
⎥⎥⎥⎦ (13)

It follows then that the complete federated system and (1)
can be represented as

˙̂x=−γ
(
∑
j∈Ni
ai j

(
L⊗ In)x̂+(D⊗ In)x̂

)
+F(t, x̂)

=−γ(H⊗ In)x̂+F(t, x̂) (14)

where H = L+diag(a1∗, · · ·an∗).
The Lyapunov candidate for each individual system is

defined as
V (x̂) = x̂′(P⊗ In)x̂ (15)

Taking the time derivative of V and using the equation (14),
we obtain

V̇ = x̂′(P⊗ In) ˙̂x+ ˙̂x′(P⊗ In)x̂
=−γ x̂′

(
(H ′ ⊗ In)(P⊗ In)

+ (P⊗ In)(H⊗ In)
)
x̂

+2x̂′(P⊗ In)F(x̂) (16)

The matrix P can be chosen to satisfy the Lyapunov function
−PH−H ′P = Q, where P is a positive definite matrix and
Q satisfies the Rayleigh-Ritz inequality for any symmetric
matrix λmin(H)‖x‖2 ≤ x′Hx ≤ λmax(H)‖x‖2. Then it follows
from above that

V̇ =−γ x̂′
(
(PH+H ′P)⊗ In)

)
x̂+2x̂′(P⊗ In)F(x̂)

≤−γλmin(Q)‖x̂‖2+2λmax(P)‖x̂‖‖F(x̂)‖

≤ −

(
γ−

2κλmax(P)

λmin(Q)

)
λmin(Q)‖x̂‖2

(17)

where κ > 0 is the (local) Lipschitz constant satisfying (10).
The complete system will be locally asymptotically stable if
the agent connective strength γ is chosen to satisfy

γ >
2kλmax(P)

λmin(Q)
(18)

V. SIMULATION EXAMPLE
In this section, a simulation is given to show the effec-

tiveness of the proposed consensus and trajectory-tracking
federated control algorithm. The example multi-agent system
is composed of 5 agents on a plane. Each agent is defined by

Si : ẋi = ai cos(xi) i ∈ {1, · · · ,N} (19)

The agents are locally stable with controllers defined in (2).
The agent control ui is based on state information from other
agents to meet federal goals as shown in Fig. 3.
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Fig. 3. A Connection Directed Graph of 5 Agents

The corresponding matrix H for a team of five agents with
the directed graph is

H =

⎡
⎢⎢⎢⎢⎣
2 −1 −1 0 0
0 1 0 0 0
−1 0 3 −1 0
0 0 −1 1 0
0 0 0 −1 2

⎤
⎥⎥⎥⎥⎦ (20)

The federated goal is defined as ẋ∗ = cos(x∗) with the
initial condition of 0. The agents are not identical, so their
dynamic weights are a = [0.001;1;0.75;1.5;1]. The agents’
initial conditions are xi = −π + 1

4σ in the simulation, where
σ = 1,2, · · ·5. The agents’ trajectory profile of the first simu-
lation is shown in Fig. 4.
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Fig. 4. Trajectory Tracking of 5 Agents with Directed Graph

A second simulation was conducted with an undirected
graph and the same initial condition as the previous simulation.
The corresponding matrix H is a symmetric matrix for an
undirected graph. It implies that H is a positive definite.
Therefore, the federated cooperative control with an undirected
graph system is a stable system. For the graph shown in Fig. 5,
the performance of the system of 5 agents under federated
cooperative control (2) is illustrated in Fig. 6.

Fig. 5. A Connection Undirected Graph of 5 Agents
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Since the control actions for the agents are implemented at
the local level, it is possible for the agents to converge to the
desired trajectory, as shown in Fig. 4 and Fig. 6. The system
consensus is successfully reached under the developed fed-
erated control algorithm and the connective strength between
agents in the system are optimized.
Moveover, determination of the connective strength between

agents plays an important rule in multi-agent federated control.
When properly chosen, the strength of the connection between
agents (i, j) implies the stability of the multi-agent agent sys-
tem. In this particular system, as shown in Fig. 4, agents 2, 3
and 5 receive the federated goal. The rest of the agents receive
the federated goal through their agent network. Simulation
results show that agent 2 has the fastest convergence to the
federated trajectory since it has only one dedicated input edge
from the federated goal handler. Agent 3 exchanges its infor-
mation with agents 1 and 4. This bi-directional information
exchange holds back the convergence time of agent 3, even
though it is directly connected to the federated goal handler.
Agent 4 has the slowest convergence time since it only receives
information from agent 3. Simulation results of an undirected
graph are shown in Fig. 6. In the undirected graph, every node
transmits and receives information from connected node(s).
This multiple information exchange configuration restricts the
convergence of all agents to the same time constant. It also
slows down the average convergence time compared to a
directed graph.
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As demonstrated, correct computation of the federated con-
trol connective strengths between agents guarantees conver-
gence of every agent in the graph. The graph topology in
the directed and undirected graph is the Consensus Gossip. A
flooding Consensus Gossip graph has a sluggish convergence
performance. Future work in federated control should include
examining system performance under Consensus Gossip op-
timization and analyzing system stability with a dynamical
graph.

VI. CONCLUSIONS
This paper presents the concept of federated control of

large-scale systems and its implementation using a multi-agent
based framework. The multi-agent interconnection strength
allows local subsystems to form large-scale systems. Large-
scale system stability through a multi-agent based controller
is obtained using Lyapunov functions and computing the
appropriate agent connection strength. Most importantly, the
computation of the appropriate agent connection strength can
be executed at the local agent level. Furthermore, we prove
that federated control of formation tracking can be achieved
as long as the formation graph has a spanning tree and
the controller parameters are determined. Simulation results
shown that federated control can stabilize multi-agent systems.
Finally, the graph Laplacian represents the connectivity among
the agents in the system. The developed federated controller
can be extended to multi-agent systems with a dynamic graph
and improve the system performance under Consensus Gossip
optimization.
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